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ABSTRACT 

Hanani  triple systems on v - l (mod 6) elements  are Steiner triple 

sys tems having (v - 1)/2 pairwise disjoint almost parallel classes (sets 

of pairwise disjoint triples that  span v - 1 elements),  and the remaining 

triples form a partial  parallel class. Hanani triple sys tems are one natural  

analogue of the Kirkman triple systems on v - 3 (rood 6) elements,  

which form the solution of the celebrated Kirkman schoolgirl problem. 

We prove that  a Hanani triple system exists for all v -- l (rood 6) 

except  for v E {7, 13}. 

1. Background 

In 1847, Kirkman [K] determined when, on a finite set V of v = IV I elements, one 

can produce a collection B of 3-element subsets of V (called t r ip les  or blocks) ,  

with the property that every 2-element subset of V occurs as a subset of exactly 

one triple in B. Kirkman proved that this is possible if and only if v = 1, 3 

(rood 6). Such a configuration has come to be known as a S t e in e r  t r ip le  s y s t e m  

of o r d e r  v, or STS(v). 

Kirkman also studied the following more difficult problem: 
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I Is it possible to take fifteen schoolgirls for a walk on each of seven consec- 
utive days, so that the girls walk three abreast, every girl walks every day, 
and no two girls walk in the same row twice? 

In modern vernacular, this fifteen schoolgirl problem asks for an STS(15) with 

the additional property that the 35 triples can be partitioned into seven classes 

of five triples each, so that each class consists of (elementwise) disjoint triples. A 

set of pairwise disjoint triples that span all of the elements is a paral le l  c la s s  

(PC) or r e so lu t ion  class, and a partition of the triples into parallel classes is a 

r e s o l u t i o n .  

Kirkman [K] generalized the fifteen schoolgirl problem by asking when a re- 

solvable STS(v) exists, and provided some small examples of resolvable STS; 

these are now known as K i r k m a n  t r ip le  sys t ems .  The existence of Kirkman 

triple systems, the well known K i r k m a n  schoolgir l  p r o b l e m ,  was the sub- 

ject of much study over the following one hundred m~d twenty years. In 1971, 

Ray-Chaudhuri and Wilson [RW] provided a complete solution, showing that a 

KTS(v) exists if and only if v -- 3 (mod 6). They also provide an interesting 

historical summary of the progress on the problem from Kirkman's time. 

Kirkman triple systems have proved to be fundamental configurations in com- 

binatorial design theory. Their uses in the construction of designs with block size 

four, and numerous classes of triple systems with additional properties, are far 

reaching. Hence, generalizations of KTS abound. 

When v = 1 (mod6) ,  no STS(v) has a parallel class as v ~ 0 (rood3).  

An a l m o s t  paral le l  class (APC) for v - 1 (rood 3) is a set of (v - 1)/3 

pairwise disjoint triples, and an a lmos t  r e so lu t ion  is a partition of the triples 

into almost parallel classes. One might hope at first to find a partition of an 

STS(v) into almost parallel classes, but a disappointment is in store. An STS(v) 

has v(v  - 1)/6 triples, and each almost parallel class has (v - 1)/3 triples. Thus 

we would require v / 2  almost parallel classes, but v is odd. To circumvent this 

numerical problem and produce an analogue of Kirkman triple systems when 

v = 1 (mod 6), Kotzig and Rosa [KR] defined nearly Kirkman triple systems of 

order 6t in a manner equivalent to the following. For an STS(v), v = 6t + 1, find 

(v - 1)/2 almost parallel classes that are disjoint, and all miss a fixed element oo. 

Deleting oo and the triples containing it, we have a resolution of a partial STS 

on 6t elements; this resolved partial STS is a nea r ly  K i r k m a n  t r ip le  s y s t e m  

(NKTS). Kirkman triple systems have (v - 1)/2 parallel classes, and the STS 
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arising from nearly Kirkman triple systems have (v - 1)/2 almost parallel classes 

all missing the same element. 

In 1974, Hanani explored a different generalization. He examined collections of 

triples in which every 2-subset occurs exactly twice; these m'e twofold triple sys- 

tems,  and exist whenever v = 0,1 (mod 3). Hanaaai [HA] established that there 

exists an almost resolvable twofold triple system if and only if v - 1 (rood 3), 

and a resolvable twofold triple system if aald only if v = 0 (rood 3), v # 6. 

These generalizations have found extensive applications in the construction 

of designs. Almost resolvable systems are most useful in the construction of 

designs with pairs occurring more than once. Nearly Kirkman triple systems 

are essentially resolutions of partial designs. If we extend such a system to the 

STS(6t + 1) defining it, mad attempted at the same time to extend tile resolution, 

each parallel class extends to an almost parallel class, but each of the 3t triples 

added in forming the STS shares an element. Let us define a part ial  parallel 

class (PPC) to be any set of pairwise disjoint triples. Then an NKTS(6t) gives 

a partition of the STS(6t + 1) into 6t partial parallel classes, of which 3t are 

almost parallel classes and 3f contain just a single triple. In 1981, Phelps (private 

communication) asked for what orders it is possible to construct an STS(v), 

v = 1 (rood 6), having a partition into (v + 1)/2 partial parallel classes, which 

is the minimum possible by nmnerical considerations. The minimum number of 

partial parallel classes required to partition the triples of aaly fixed system is the 

chromat ic  index X' of the system. Hence Phelps's question asks for Steiner 

triple systems of orders congruent to 1 (rood 6) whose chromatic index is the 

minimum possible, (v + 1)/2. 

In addition to settling Phelps's question, our objective is to generalize the 

Kirkman schoolgirl problem in the strongest way. Hence we examine STS(v), 

v = 1 (mod 6), that have (v - 1)/2 ahnost parallel classes, and the remaining 

(v - 1)/6 triples form a partial parallel class. We call these STS Hanani  tr iple 

sys tems,  and denote them by HATS(v). 

The relation of HATS to KTS and NKTS is clear, but they have in addition 

a close connection with Hanani's almost resolvable twofold triple systems. For 

suppose that (V, B) is a HATS(v); each element is missed by exactly one of the 

partial parallel classes, so suppose that {1,. . . ,  (v - 1)/2} are each missed by one 

of the almost parallel classes and that {(v + 1) /2 , . . . ,  v} are each missed by the 

remaining partial parallel class. Form a second HATS(v) (V, B') by renmnbering 
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the elements as i v-. v + 1 - i for 1 < i < v. Then (V, B U B') is a twofold triple 

system; moreover, it is almost resolvable - -  form an almost resolution by taking 

all almost parallel classes of/3 and of B ~, and forming the final almost parallel 

class as the union of the partial parallel classes of B and B'. Thus the existence of 

a Hanani triple system of order v provides not only a solution to Phelps's problem, 

but also a particularly elegant construction of an almost resolvable twofold triple 

system of order v, the designs studied by Hanani [HA]. 

In this paper, we prove: 

MAIN THEOREM: A Hanani triple sys tem o/order  v exists i f  and only i f  v - 1 

(rood 6),,  ¢ {7,13}. 

Necessity is obvious from the definition, and the observation that the unique 

STS(7) has chromatic index 7, aald both of the nonisomorphic STS(13) have 

chromatic index 8 [C]. 

2. Some direct constructions 

Our first direct construction is a straightforward application of Bose's method of 

differences; for details of the method, see, e.g., Hall [H], and also [RW], Section 

3. 

Let t _> 1 be an integer. An APC P on the set V = {oo}UZst+3 x {0,1} 

is s m o o t h  if the pure difference +(2t + 1)0 does not occur in P, and all other 

differences (pure or mixed) occur at most once in P. 

It follows that in a smooth APC every difference other than the pure difference 

+(2t + 1)0 occurs exactly once, and the element not covered by the APC is x0 

for some x E Z6t+s. Without loss of generality, we may assume that any smooth 

APC contains the triple {oo, 00, 01 }. 

Example  1: A smooth APC on 19 elements: 

oo 00 01,10 30 51,20 70 81,40 50 31,80 21 41,11 61 71. 

Example  2: A smooth APC on 31 elements: 

oo 00 01,10 20 40,30 120 91,60 100 l l l ,T0 140 61,80 11 41, 

90 71 31,110 131 141,51 101 121,130 21 81. 

LEMMA 2.1: / / ' there exists a smooth  APC o11 V with IVI = 12t + 7 e/ements, 

then there exists a HATS(12t + 7). 
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Proof." Let C = { { io, ( i + 2t + l )o, ( i + 4t + 2)o } : i = 0,1,...,2t}. I f P  is a smooth 

APC, let, for i E Z6,+a, 

Pi = ({i  + a, i  + b,i + c}: {a,b,c} e P} .  

Then (V, C OUiez,,+3 Pi) is clearly an STS(12t + 7). Taking Pi, i = 0,1, ..., 6t + 2, 

and C as colour classes shows that this STS is a HATS. | 

COROLLARY 2.2: There exists a HATS(v) for v = 19,31. 

Proof.." See Examples 1 and 2. | 

We can obtain a smooth APC (and thus a HATS) by a method similar to 

that which produces a Kirkman triple system from a Room square (cf. [MV]). 

Suppose we have a starter-adder constructed Room square R (cf. [DS]), with 

the underlying set V = {oo} U Zet+3 x {1}, and assume w.l.o.g, that the upper 

lefthand corner cell of R contains the pair oo 01. Label the 6t + 3 columns of 

R with elements of Z6t+s x {0} so that the ith colunm of R is labelled with 

i0. Let X0 C Z6t+a x {0} be the set of labels of columns for which the first 

row cells in R are empty; clearly iX0] = 3t + 1. If for some Y0 E Xo there 

exists a partition of X0\{Y0} into t triples {uq,vq,Wq},q = 1,... ,t ,  such that 

{(Uq)0, (Vq)O, (wq)0}, q = 1, ..., t, together with {00, (2t + 1)0, (4t + 2)0 } is the set 

of base blocks of a cyclic STS(6t + 3) on Z6t+s x {0} then 

P = {{(ua)o,(Vq)O,(wq)o}: q = 1,...,t} U {{r0,(xr), ,(yr),}:  (xr) , , (y~) l  

occurs in the first row of R in the coluum labelled 7"1 } 

is a smooth APC on {oo} U Z6t+a x {0, 1}; the element not covered by P is y0. 

While the construction of [MV] produces a KTS(12t + 3) with maximum sub- 

STS(6t + 1), the situation is, in a certain sense, reversed here: we construct a 

HATS(12t + 7) with a maximum sub-STS(6t + 3). The smooth APCs in the next 

examples are obtained by the construction just described. 

Example 3: A smooth APC on 43 elements: 

oo 00 01,60 71 141,100 51 161,120 21 191,140 81 131,150 31 181, 

160 91 121,170 61 151,180 11 201,19o 101 111,200 41 171,10 20 110, 

30 70 90,50 80 130. 
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Example 4: A smooth APC on 55 elements: 

oo 0o 01,4o 101 171,5o 41 231,10o 71 201,11o 51 221,13o 111 161, 

16o 31 241,17o 91 181,20o 21 251,22o 121 151,23o 81 191,24o 11 261, 

250 131 141,26o 61 211,1o 15o 21o,2o 60 14o,7o 90 12o,8o 18o 19o. 

Example 5: A smooth APC on 67 elements: 

oo 0o 01,7o 101 231,11o 71 261,12o 91 241,13o 121 211,14o 61 271, 

15o 81 251,17o 51 281,22o 131 201,23o 41 291,25o 141 191,26o 21 311, 

270 111 221,28o 151 181,29o 31 301,30o 11 321,31o 161 171,1o 5o 10o, 

2o 4o 19o,6o 9o 16o,8o 200 21o,18o 240 32o. 

Example 6: A smooth APC on 79 elements: 

0o 01,8o 141 251,9o 121 271,12o 81 311,13o 61 331,15o 91 301, 

16o 131 261,18o 101 291,20o 51 341,26o 15, 241,270 41 35,, 28o 161 23,, 

31o 171 221,32o 21 371,33o 7, 321,34o 181 21,,35o 3, 361,36o 1, 38,, 
370 19, 201,38o 111 281,1o Iio 22o,20 40 19o,3o 6o 10o,7o 21o 300, 
50 17o 250,230 240 290. 

Example 7: A smooth APC on 91 elements: 

oo 0o 01,5o 191 411,8o 171 43,,12o 221 381,14o 161 441,17o 211 391, 
200 271 331,21o 181 421,240 71 81,250 241 36,, 270 61 9,, 280 20, 401, 
30o 51 101,32o 281 321,33o 41 111,34o 231 37,,360 291 311,37o 25, 351, 
390 21 131,40o 261 341,41o 1, 141,42o 31 12,,43o 151 301,2o 19o 230, 
6o 7o 16o,9o 11o 29o,1o 40 35o,13o 18o 26o,15o 380 44o,30 I0o 220. 

Example 8: A smooth APC on 103 e]e,nents: 

cx~ 0o 0,,49o 11 501,47o 21 491,50o 31 481,48o 41 47,,41o 5, 461, 
370 61 451,35o 71 441,46o 81 43,,320 9, 42,,290 i01 411,18o 111 401, 
21o 121 391,17o 131 381,200 141 37,, 25o 151 361,2o 161 351,390 171 34,, 
450 181 33,,400 191 321,44o 201 311,5o 211 301,3o 221 291,43o 231 281, 
380 241 271,42o 251 261, Iio 12o 360, 70 280 300, 19o 220 330, 90 13o 31o, 
Io 60 16o,4o 10o 230,80 15o 24o,14o 260 340. 

LEMMA 2.3: There exists a HATS(v) for v E {43, 55, 67, 79, 91,103}. 

Proof." Take Examples 3-8 and Lenmm 2.1. 1 

We have not produced yet any HATS of orders = 1 (mod 12); all our examples 

constructed so far were of orders v = 7 (mod 12). The next direct construction 

devised for orders v ~ 1 (rood 12) is somewhat more involved. 
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Let t > 1 be an integer. A n A P C  P on the set V = {oo}OZ6t x { 0,1} is 

g r e a s y  if it has the following properties: 

(i) P = T O H where 

H = {{o0,00,(3t)0}, {0, ,ai ,bi},  {(3t) , , (a  + 3t)i,(b + 3t)/}}, i , j  E {0, 1}, 

and T is a set of 4t - 3 triples, 

(ii) for U = T O {COo, ai, (b + 3t)j}, {0,, ai, bj}}, the pure differences 

+(2t)o, +(3t)0, +(3t) ,  do not occur in U but all other differences (pure 

or mixed) occur exactly once in U. 

LEMMA 2.4: /.f there exists a greasy APC on V with IV] = 12t + 1 elements, 

there exists a HATS(12t + 1). 

Proof." Let P be a greasy APC, with T, H, and U as defined above. Let C = 

{{io, (i + 200 , (i + 4t)o}: i = 0, 1, ..., 2t - 1}, and 

Dj = {oo, ij, (i + 3t)j}: i = 0,1, ..., 3t - 1,j  = 0, 1 

For k e Z6,, let Uk = CCa + k, b + k, c + k}: Ca, b, c} e U}, and let 

B = C U D o U D a U  U Uk. 
kEZ~, 

Then clearly (V, B) is an STS(12t + 1) : the sets C, Do and D, use up precisely 

the differences not occurring in U. We have to show that (V, B) is a HATS. 

For k = 0,1, . . . ,3t  - 1, let Pk = {Ca + k,b + k,c + k}: {a,b,c} E P}. Let 

g = {{oo,01,(3t),}, {Oo,ai,(b+3t)j}, {(3t)o,(a+3t)i, bi}}, and let Q = T u g ;  

since P is an APC, so is Q. For k = 3t, 3 t+  1, ..., 6 t -  1, let Qk = {{a+k ,b+k ,c+ 

k}: {a,b,c} E Q}. Taking now Pk, k = 0,1, . . . , 3 t - 1 ,  Qk, k = 3 t ,3 t+l , . . . , 6 t -1 ,  

and C as the 6t + 1 colour classes shows that (V, B) is a HATS. | 

COROLLARY 2.5: There exists a HATS(25). 

Proof." Take 
H = {{oo, 0o, 6o}, {0,, I,, 3, }, {6,, 7,, 9, }}, 

T -- {{5,, 10,, 10o}, {50,80,4, }, {20, 3o, 8, }, {70,90,11, }, {11o, 40,2, }}; 

then K = {{¢x~,0,,6,}, {0o, 1,,9,}, {6o,7,,3,}}. It is straightforward to verify 
that P = T U H is a greasy APC, and so Lemma 2.4 applies. | 
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COROLLARY 2.6: There exists a HATS(49). 
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Proof: Take H = {{c¢,0o, 12o}, {0,, I,,3,}, {12,, 13,, 15,}}, and 
T = {{2,,6,, 11,}, {4,, I0,, 17, }, {8,, 16,, 2o }, {3o,4o, 7,}, {6o, 8o, 19, }, 
{19o, 220, 18, }, {17o, 21o, 141 }, {I0o, 15o, 20, }, {5o, 11o, 51}, {13o, 200,221 }, 
{70,16o, 23, }, {23o, 90,21, }, {14o, Io, 9, }}; 
then K = {{co,0,, 12,}, {0o, I,, 15,}, {12o, 13,,3,}}. One verifies again directly 
that P = T U H  is a greasy APC, and the corollary follows by Lemma 2.4. I 

3. A recursive construct ion  

Our basic induction argument is based on the following theorem. 

THEOREM 3.1: Let (V,G,B) be a group divisible design (GDD) with IVl -- v, 

IGI - 0 (mod 3) for all groups G E G(IGI > 9), and Inl = 1 (,nod 3)/'or all 

blocks B E B. If for each G E G there exists a HATS(2IG [ + 1) then there exists 

a HATS(2v + 1). 

Proof." Put V* = V × {1,2} O {oo}. For each B E B let VB = B × {1,2} U{oo}. 

Let (VB, CB, RB) be a Kirkman triple system KTS(2[B[ + 1) such that B,  = 

{oo, al,a2} E CB for each a E B. Each B,  is in a unique parallel class of RB; 

let R~ be this parallel class. Further, for each group G E G let (Va, Ca), where 

Va = G x {1,2} U {oo}, be a HATS(2[G[ + 1) such that o0 is ,tot contained in a 

triple of the "short" colour class, say G*, and {oo, al,a2} E Ca for each a E G. 

Again, Coo, a,, a2} defines a unique almost parallel class Ra G in Co. 

Define now B* = U R ~ U { G * : G E G } , a n d  
aEV, BEB 

R,*= U R ~ U { R  a} f o r a E V ,  R ~ =  U G*. 
BEB GEG 

It can be checked that (V*, B*) is a HATS(2v + 1) with colour classes R~, a E V, 

and the "short" colour class R~. | 

LEMMA 3.2: If  t and m are nonnegative integers sudl that 0 < t < m and there 

exists a set of three mutually orthogonal latin squares (MOLS) of order m then 

there exists a GDD with 12m + 3t elements, with blocks of size 4 and groups of 

size 3ra and 3t. 
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Proof: If there exists a set of three MOLS(m) then there exists a GDD with 

blocks of size 5 and 5 groups of size m (cf. [BJL]; the GDD is actually a transversal 

design). Deleting m - t elements from one of the groups yields a GDD G* with 

blocks of size 4 and 5, and with 4 groups of size m and one group of size t. 

There exists a GDD G1 with 4 groups of size 3 and blocks of size 4, and a 

GDD G2 with 5 groups of size 3 and blocks of size 4; G1 and G2 are obtained 

by removing an element of PG(2, 3), and of AG(2, 4), respectively. Apply now 

Wilson's Fundamental Construction (cf. [BJL]) to G* by giving each element a 

weight of 3 and using G1, G2 to obtain a GDD as in the statement of the lemma. 
| 

If t >_ 3, all group sizes are at least 9 (and, of course, multiples of 3). 

4.  A f e w  m o r e  c o n s t r u c t i o n s  

Denote M* = {v: there exists a HATS(v)}, and let R = {,': 2 , '+  1 E M*}. In 

this notation, we have already shown {9, 12, 15, 21,24, 27, 33, 39, 45, 51} C R. The 

next few lemmas establish several further values as members of R. 

LEMMA 4.1: 18 E R. 

Proof." Put  V = {oo} tJZ9 x {1,2,3,4}. Let P be the following APC (we omit 

brackets and commas): 

P = {oc 01 23,11 12 43,51 72 33,42 53 44,22 63 34,31 73 04, 

21 82 74,71 81 62,41 0a 13,61 14 54,83 84 64,32 52 02}, 

and let P' be the APC obtained from P by adding I modulo 4 to the subscripts. 

Developing P and P', respectively, modulo 9 yields a total of 18 APCs; let B be 

the union of all triples of these 18 APCs. If C = {0, 31 6,,04 34 64 (rood 9)} 

is the "short" PPC then (V, B U C) is a HATS(37). | 

LEMMA 4 .2 :30  E R. 

Proof: This is a similar construction to the one in the preceding lemma, but 

here V = {~}UZ15 × {1,2,3,4}, C = {0, 51 10,,04 54 104 (rood 15)}, 

P={oo01 i03,141 22 13a,121 42 143,11 92 73,111 132 14,41 102 74, 

131 122 84,32 3s 114,52 63 54,72 123 144,142 113 34,81 93 124,31 83 24, 
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101 4s 104,21 03 44,71 112 12,51 61 91,62 82 02,13 2a 53,134 04 64}, 

and P and P '  are developed modulo 15. The result is a HATS(61). 

LEMMA 4 . 3 : 4 2  E R. 

Proof: The construction that we use in this case is somewhat similar to that 

of Lemma 2.4 (using greasy APCs). Let V = Z30 × {1, 2} U { ~ ,  al,  a2 , . . . ,  a24}. 

The HATS(85) (V, B) to be constructed contains a sub-HATS(25) on { ~ ,  al,  a2, 

• . . ,a2a}. Let H = {oo 01 151,51 02 52,201 152 202}, K = { ~  02 152,01 51 202, 

151 201 52}, T = {11 111 32,al 281 292,a2 211 272,a3 141 242,a4 21 162, 

a5 251 142,a6 131 92,a7 291 22,a6 191 262,a9 121 232,a10 61 222,aal 221 132, 

a12 101 72,ala 271 12,a14 261 42,a15 71 192,a16 241 112,a17 171 102,als 81 62, 

a19 231 282,a20 161 252,a21 41 172,a22 31 212,a~3 181 122,a24 91 82}. Let C = 

{02 102 202 (mod 30)}, and let further P = HUT, P' = KUT; note that both P 

and P '  are APCs while C is clearly a PPC. If Pi = { { z + i, y + i, z + i }: { x, y, z} E 

P},  e~ = { { x + i , y + i , z + i } :  {x,y,z}  e P'} where aj + i  = a I then Pi, 

i = 0 ,1 , . . . , 14 ,  and P~, i = 15, 16,. . .  ,29 are altogether 30 (disjoint) APCs. 

The elements missed by these 30 APCs are those of Z30 × {2}. The pairs not 

contained in the union of our 30 APCs are those of a disjoint union of a K25 

on {oo, al ,a2, . . .  ,a2a}, a/£6,6,6,6,6 on Z30 x {1}, and a I(6,6,6,6,6 on Z30 x {2}, 

together with those of C. To get further twelve APCs, proceed now as follows: 

there exists a resolvable GDD with 5 groups of size 6 having 12 PCs of triples 

[RS], and by Corollary 2.5, there exists a HATS(25). Construct now 12 APCs on 

Za0 x {1, 2} U {oo, al, a2 , . . ,  a24} by combining in the obvious way the 12 PCs of 

the GDD with the 12 APCs of the HATS(25). If C' is the "short" colour class of 

the HATS(25) then the triples of CUC' together with the triples of the 42 APCs 

constructed above form a set of triples B. It is easy to verify that (V, B) is an 

STS(85); in fact, taking the 42 APCs as colour classes together with C U C' as 

the 43rd colour class shows that it is a HATS(85). | 

LEMMA 4 . 4 : 5 4  E R. 

Proof: By Theorem 4.5 of [S], there exists a Kirkman frame of type 18 6, i.e. 

a GDD with 6 groups of size 18 and blocks of size 3 with the property that 

the blocks can be partitioned into PPCs called holey paral le l  c lasses  each of 

which misses the elements of precisely one group (for a definition of a Kirkman 
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frame, see [S]). For each group Gi, i = 1, 2 , . . . ,  6, of this GDD, there are exactly 

9 holey parallel classes missing Gi. Put now V = {oo} O Ui=l Gi. By Lemma 2.1, 

there exists a HATS(19); 9 of its colour classes are APCs. Let, for i = 1, 2 , . . . ,  6, 

(Vi, Bi) be a HATS(19) where ~ = {oo} O Gi, Ci is the 10th (short) colour 

class, and Ci does not cover oo. For each i = 1 ,2 , . . .  ,6, combine the 9 holey 

parallel classes missing the group Gi in the obvious way with the 9 colour classes 

of (Vi, Bi) which are APCs to obtain 9 APCs on V. Since we have 6 groups, this 

gives 54 APCs. Finally, take [.J Ci as the short colour class. | 

Observe that the construction of Theorem 3.1 is also, in effect, a Kirkman 

frame construction. 

LEMMA 4.5: {66,78} C R. 

Proof." The proof is similar to that of Lemma 4.4. There exists a Kirkman 

frame of type 244361 [RS], and by Corollary 2.5 and Lemma 4.1, there exists a 

HATS(25) and a HATS(37). Adjoining a new element oo and "filling in" GU {~}  

with a HATS(25) if G is a group of size 24, and with a HATS(37) if G is the 

group of size 36 yields a HATS(133). To show 78 E R, proceed in exactly the 

same way but start with a Kirkman frame of type 24s361 which exists by [RS]. 

t 

LEMMA 4 . 6 : 8 7  E R. 

Proof." There exists a GDD with 29 elements of type 4B51 with blocks of size 4 

and 5: Start with an S(2,4,28) (see [BJL]) having two parallel classes C mad C' 

such that IC N CII = 1. Take the blocks of C as the groups and extend each of 

the blocks of C' with a new element oo; (C A C') O {oo} will become the group of 

size 5. Now use Wilson's Fundmnental Construction with GDD of type 34 and 

3 s to obtain a GDD on 87 points of type 126151 mid block size four. Then apply 

Theorem 3.1. | 

LEMMA 4 . 7 : 1 3 8  E R. 

Proof: There exists a GDD of type 4l°61 and with blocks of size 4 and 5 (start 

with a resolvable S(2,4,40) (see [BJL]), and extend 6 of its parallel classes with 

6 new infinite elements). Now proceed ms in the proof of Lelmna 4.6 to complete 

the construction. | 
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5.  T h e  m a i n  r e s u l t  

LEMMA 5.1:  R ~ = {3s: 3 < s < 30} C R. 
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Proof'. The direct constructions of Section 2 together with Lemmas 4.1-4.6 im- 

ply that we need to deal only with the values of s = 12,16,19, 20, 21, 23, 24, 25, 27, 

28,30. Since there exist 4 - GDDs of types 94, 124 and 99, applying Theorem 

3.1 gives 36,48,81 E R. Similarly, the existence of a transversal design (for a 

definition see, e.g. [BJL]) TD(7, 9) and a TD(10, 9), respectively, together with 

an application of Theorem 3.1 yields 63,90 E R. Taking m = 4, t = 3 in Lemma 

3.2 gives 57 E R. Taking m = 5, and t = 0, 3, 4, 5, respectively, in Lemma 3.2 

gives 60, 69, 72, 75 E R. Finally, taking m = 7 and t = 0 in Lemma 3.2 yields 

8 4 E R .  I 

THEOREM 5.2: R = {3s: s >_ 3}. (In other words, there exists a HATS(v) it" 

and only i[v - 1 (mod 6), v > 19.) 

Proof'. In view of Lemma 5.1, we may assume s > 31. For every s _> 31 there 

exist m and t such that 3s = 12m+3t  where m _> 7, t = 3,4,5 or 6, and t < m. If 

there exists a set of 3 mutually orthogonal latin squares of order m then Theorem 

3.1 applies, and 3s E R. A set of 3 MOLS(m) is known to exist for all values 

of m of interest to us (i.e. m _> 7) except for m = 10 (cf. [BJL]). Thus we 

must still consider the values of 3s = 129, 132,135, mad 138. But 138 E R by 

Lemma 4.7, and taking in Lemma 3.2 m = 9 mad t = 7, 8 and 9, respectively, 

gives 129,132,135 E R. This completes the proof. II 

6.  C o n c l u s i o n  

Even though the question posed by Phelps a decade ago is answered at last by 

our main theorem, there are several related problems that one might consider and 

that are largely open. One question related to the famous ErdSs-Faber-Lov£sz 

conjecture is that about the max/mum chromatic index of all STS(v). Colbourn 

and Colbourn [CC1] have shown that the chromatic index of a cyclic STS(v) 

cannot exceed v. More recently, Pippenger and Spencer [PSI used probabilistic 

methods to show that for sufficiently large v, the chromatic index of an STS(v) 

is asymptotic to v/2. A more ambitious question would be to ask about the spec- 

t rum (i.e. the range of possible values) for chromatic indices of STSs. Colbourn 
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([C]; see also [CC2]) has established that of the S0 STS(15)s, 4 have chromatic 

index 7, 13 have chromatic index 8, and the remaining 63 have chromatic index 

9. Not much else seems to be known in this direction. In this connection, one 

may also inquire about the computational complexity of computing the chromatic 

index of STSs exactly (cf. [RC]). 

A different avenue of generalization is to consider the minimum chromatic 

index of packings and coverings. For v -- 0 (mod 6), the answer for packings is 

provided by NKTS; for coverings, see [AMS]. 

As another possible spinoff problem, one might ask about the mininmm chro- 

matic index of triple systems TS(v, A) with higher index . Hanani's results on 

the existence of resolvable TS(v, 2) and almost resolvable TS(v, 2) [HA] provide 

us with a complete answer for A = 2 : There exists a TS(v, 2) with minimum 

chromatic index v - 1 if and only if v - 0 or 1 (rood 3), v # 6 (the unique 

TS(6, 2) has chromatic index 10). 

However, to best of our knowledge, no such answer is available for A = 3 and 

for A = 6, the remaining "minimal" values of A. Therefore let us conclude with 

the following two open problems. 

ProMem 1: Does there exist, for every v = 5 

mum chromatic index (3v + 5)/2 ? 

Problem 2: Does there exist, for every v = 2 

mum chromatic index 3v + 4 ? 

(rood 6), a TS(v, 3) with mini- 

(rood 6), a TS(v, 6) with mini- 
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